An Object-oriented computational framework for the simulation of variably saturated flow in soils, using a reduced complexity model

نویسندگان

  • Grigorios G. Anagnostopoulos
  • Paolo Burlando
چکیده

A simple and efficient computational modelling framework is presented for the simulation of variably saturated flows in porous media, which is not based on a conventional numerical solution of the Richards’ equation. The computational domain is discretized with a regular grid and simple rules govern the flow dynamics. Each cell can have distinct hydraulic properties and its state depends only on the state of its neighbouring cells. These concepts make easier and computationally more efficient the simulation of large-scale variably saturated flow in heterogeneous media. Due to its object oriented design, the presented framework is very flexible and easily extensible and can be used for various engineering applications (e.g. prediction of rainfall-induced landslides, water and solute transport in agricultural soils), where the simulation of variably saturated flow is crucial. The modelling framework has been validated with experimental results and analytical solutions for 2-D and 3-D problems available from the literature, showing very good agreement even in cases where strong non linearities existed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media

The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water.  So, the averaging method applied to compute hydraul...

متن کامل

Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid

In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...

متن کامل

Estimation of zeolite application effect on solute transport parameters at different soils using HYDRUS-1D model

ABSTRACT-Application of models for simulation of solute and pollutants transport in soil can reduce time and costs for remediation process. HYDRUS-1D model was developed to simulate the one–dimensional flow of soil water, heat, solute and viruses in variably saturated–unsaturated porous media. The objective of this investigation is to determine the solute transport parameters in disturbed soil ...

متن کامل

A Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies

In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...

متن کامل

A Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies

In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2012